

A NOTE ON TRANSVERSE VIBRATIONS OF CIRCULAR, ANNULAR, COMPOSITE MEMBRANES

P. A. A. LAURA, D. V. BAMBILL AND R. H. GUTIERREZ

Institute of Applied Mechanics (CONICET) and Department of Engineering, Universidad Nacional del Sur, 8000-Bahia Blanca, Argentina

(Received 22 May 1995, and in final form 6 November 1996)

1. INTRODUCTION

The dynamic analysis of mechanical systems with discontinuously varying material properties has been the subject of many recent investigations. In an excellent paper, Spence and Horgan [1] found upper and lower bounds for the natural frequencies of vibration of a circular membrane with stepped radial density and they showed that eigenvalue estimation techniques based on an integral equation approach are more effective than classical variational techniques. A conformal mapping approach was used in reference [2] in the case of composite membranes of regular polygonal shape whose inner circular core possesses a density ρ_1 while the remaining is characterized by ρ_0 .

In general previous investigations deal with composite, simply connected membranes. The present study deals with a doubly connected membrane, fixed at radii \overline{b} (outer radius) and \overline{a} (inner radius).

Two schemes are assumed in the case of continuous variation of the density (Figure 1(a)):

(A-1):
$$\rho(r) = \rho_0(1 + \alpha r) = \rho_0 f(r)$$
, where $r = \bar{r}/b$ and $f(r) = 1 + \alpha r$, (1)

(A-2):
$$\rho(r) = \rho_0[1 + \alpha(r-a)] = \rho_0 f(r)$$
, where $f(r) = 1 + \alpha(r-a)$; $a = \bar{a}/\bar{b}$. (2)

Figure 1(b) depicts the situation where the density varies in a discontinuous fashion.

2. SOLUTION BY MEANS OF THE OPTIMIZED RAYLEIGH-RITZ METHOD

The classical Rayleigh-Ritz method requires minimization of the functional

$$J[W] = U_{max} - T_{max}, \tag{3}$$

where

$$U_{max} = \frac{S}{2} \int_{a}^{1} \int_{0}^{2\pi} \left[\frac{\mathrm{d}W}{\mathrm{d}r} \right]^{2} r \,\mathrm{d}r \,\mathrm{d}\theta, \qquad T_{max} = \frac{1}{2}\omega^{2} \int_{a}^{1} \int_{0}^{2\pi} \rho \,W^{2}r \,\mathrm{d}r \,\mathrm{d}\theta, \qquad (4a, b)$$

W is the displacement amplitude and S is the applied tensile force per unit length, at each boundary.

Expressing W in the form

$$W \simeq W_a = \sum_{n=1}^{N} A_n g(r), \qquad (5)$$

where each co-ordinate function g(r) satisfies the boundary conditions

$$W(a) = W(1) = 0,$$
 (6)

 $0022 - 460 X/97/350692 + 06 \ \$25.00/0/sv960839$

Figure 1. Circular, annular membranes of non-homogeneous density: (a) continuous variation of the membrane density, (b) discontinuous variation of the membrane density; $r = \bar{r}/\bar{b}$, $a = \bar{a}/\bar{b}$; (A-1), $\rho = \rho_0(1 + \alpha r)$; (A-2), $\rho = \rho_0 [1 + \alpha (r - a)].$

substituting in (3) and requiring

$$\partial J/\partial A_n[W_a] = 0 \quad (n = 1, 2, \dots, N), \tag{7}$$

one finally obtains a determinantal equation in the desired eigenvalues $\sqrt{(\rho_0/S)\omega b}$. Including an exponential parameter γ in the co-ordinate functions, one is able to optimize the frequency coefficients by requiring that

(

$$\mathrm{d}\Omega/\mathrm{d}\gamma = 0. \tag{8}$$

693

Table 1 depicts the co-ordinate functions used in the numerical experiments performed in the present investigation. A rather interesting feature is the fact that the co-ordinate functions contain a singularity at $r \rightarrow 0$.

3. USE OF THE DIFFERENTIAL QUADRATURE METHOD

In the case of normal modes of vibration the governing differential equation is

$$rW'' + W' + (\rho(r)/S)b^2\omega^2 rW = 0,$$
(9)

Function Approximation (1) $W_a = A_1(1 - a/r)[1 - (r)^{\gamma}]$ $W_{a} = A_{1}(r - a)[1 - (r)^{\gamma}] \ln r$ $W_{a} = A_{1}(1 - a/r)[1 - (r)^{\gamma}] \ln r$ $W_{a} = A_{1}(1 - a/r)[1 - (r)^{\gamma}] + A_{2}(1 - a/r)[1 - (r)^{\gamma+1}]$ $W_{a} = A_{1}(1 - a/r)[1 - (r)^{\gamma}] + A_{2}[1 - (a/r)^{2}][1 - (r)^{\gamma+1}]$ $W_{a} = A_{1}(r - a)[1 - (r)^{\gamma}] \ln (r) + A_{2}(1 - a/r)[1 - (r)^{\gamma+1}]$ (2)(3) (4)(5) $2 \cdots N-1 N$

TABLE 1 Co-ordinate functions employed when using the optimized Rayleigh-Ritz method

Figure 2. Partition of the interval [0, 1] when applying the differential quadrature method.

Ó

а

TABLE 2

	Approximation		Approx	imation		Exact
a/b	(2)	(I)	(4)	(5)	(II)	Values
0.10	3.334	3.514	3·325 7·290	3·319 6·970	3·324 7·254	3·3139 6·8576
0.20	3.836	3.952	3·822 7·960	3·823 7·956	3·816 8·146	3·8159 7·7855
0.30	4.437	4·517	4·417 9·037	4·420 9·170	4·418 9·286	_
0.40	5.214	5·270	5·186 10·90	5·192 10·746	5·198 10·822	5·1830 10·4432
0.50	6·285	6·324	6·248 12·93	6·257 12·926	6·272 12·976	_
0.60	7.878	7.905	7·830 16·08	7·843 16·17	7·869 16·212	7·8284 15·6948
0.70	10.523	10·540	10·456 21·391	10·476 21·588	10·517 21·609	_
0.80	_	15·811	15·699 32·05	15·731 32·39	15·797 32·407	15·6980 31·4110

Comparison of values of the first two eigenvalues Ω_{01} and Ω_{02} in the case of axisymmetric modes of vibration (uniform density case)

(I): one term solution (5): $W \simeq A_1(\bar{r} - \bar{a})(\bar{b} - \bar{r})$

(II): two term solution (5): $W \simeq A_1(\bar{r} - \bar{a})(\bar{b} - \bar{r}) + A_2(\bar{r} - \bar{a})(\bar{b}^2 - \bar{r}^2)$

NOTE: Galerkin's method was used in reference [5].

where, as previously stated in the Introduction,

(A-1):
$$\rho(r) = \rho_0(1 + \alpha r) = \rho_0 f(r), \quad f(r) = 1 + \alpha r;$$

(A-2):
$$\rho(r) = \rho_0 [1 + \alpha(r - a)] = \rho_0 f(r), \quad f(r) = 1 + \alpha(r - a), \quad a = \bar{a}/\bar{b}.$$

Expressing equation (9) in the form

$$rW'' + W' + \Omega^2 f(r)rW = 0$$
(10)

which must satisfy W(a) = W(1) = 0 and making use of Bert and associates well established notation [3, 4], one obtains the following homogeneous, linear system of equations which allows for the approximate determination of the Ω 's:

$$\sum_{k=2}^{N-1} (r_i B_{ik} + A_{ik}) W_k + \Omega^2 f(r_i) r_i W_i = 0, \qquad i = 2, \dots, N-1.$$
(11)

The partition of the interval [0·1] is depicted in Figure 2. The frequency coefficient Ω_{01} was determined making N = 9 while Ω_{02} was evaluated taking N = 12, in general.

4. NUMERICAL RESULTS

In order to ascertain the accuracy achieved using the different co-ordinate functions shown in Table 1, they were employed first in the case of annular, homogeneous membranes; Table 2. In general the approximation ((4)) did provide the most accurate value of Ω_{01} . The results obtained using approximations ((1)) and ((2)) were not as accurate

LETTERS TO THE EDITOR

Comparison of values of Ω_{01} ($\rho = \rho_0(1 + \alpha r)$)										
		α .								
a/b		0	0.50	1	1.50	2	2.50	3		
0.10	R–R	3·325	2·948	2·674	2·464	2·296	2·158	2·042		
	DQ	3·320	2·942	2·668	2·457	2·290	2·152	2·036		
0.20	R–R	3·822	3·353	3·021	2·772	2·575	2·414	2·280		
	DQ	3·816	3·347	3·016	2·766	2·569	2·409	2·275		
0.30	R–R DQ	4·417 4·412	3·837 3·832	3·437 3·433	3·141 3·136	$2.909 \\ 2.905$	2·722 2·718	2·565 2·563		
0.40	R–R	5·186	4·464	3·976	3·620	3·345	3·124	2·942		
	DQ	5·183	4·460	3·973	3·616	3·341	3·121	2·939		
0.50	R–R	6·248	5·328	4·722	4·284	3·949	3.682	3·463		
	DQ	6·246	5·325	4·719	4·282	3·947	3.680	3·461		
0.60	R–R	7·830	6·617	5·835	5·278	4·854	4·519	4·244		
	DQ	7·828	6·615	5·833	5·275	4·852	4·517	4·242		
0.70	R–R	10·456	8·759	7·687	6·931	6·362	5·914	5∙548		
	DQ	10·455	8·758	7·685	6·930	6·361	5·912	5∙547		
0.80	R–R	15·685	13·036	11·387	10·240	9·831	8·707	8·161		
	DO	15·698	13·036	11·387	10·239	9·380	8·706	8·159		

TABLE 3 Comparison of values of Ω_{01} ($\rho = \rho_0(1 + \alpha r)$)

R-R: Optimized Rayleigh-Ritz; co-ordinate functions (4). DQ: Differential quadrature

		α.							
a/b		0	0.50	1	1.50	2	2.50	3	
0.10	R–R	7·293	6·549	6·007	5·587	5·246	4·963	4·722	
	DQ	6·858	6·078	5·520	5·093	4·754	4·474	4·239	
0.20	R–R	7·964	7·027	6·368	5·869	5·473	5·149	4·877	
	DQ	7·785	6·832	6·164	5·661	5·265	4·942	4·672	
0.30	R–R	9·037	7·873	7·070	6·473	6·008	5·630	5·317	
	DQ	8·932	7·763	6·961	6·367	5·903	5·528	5·216	
0.40	R–R	10·609	9·107	8·112	7·389	6·831	6·384	6·015	
	DQ	10·443	8·990	8·015	7·302	6·751	6·309	5·943	
0.50	R–R	12·936	10·956	9·686	8·650	8·088	7·509	7·082	
	DQ	12·546	10·702	9·489	8·613	7·943	7·408	6·969	
0.60	R–R	16·083	13·820	12·012	10·872	10·006	9·318	8·755	
	DQ	15·694	13·266	11·701	10·586	9·739	9·067	8·518	
0.70	R–R	21·391	16·672	15·744	14·202	13·039	12·122	11·375	
	DQ	20·935	17·539	15·394	13·883	12·745	11·847	11·116	
0.80	R–R	32·059	26·632	23·270	20·926	19·173	17·797	16·681	
	DQ	31·415	26·090	22·792	20·495	18·776	17·428	16·334	

 $\label{eq:TABLE 4} TABLE \ 4$ Comparison of values of $\Omega_{02} \ (\rho = \rho_0(1+\alpha r))$

							1/	
					α			
a/b		0	0.50	1	1.50	2	2.50	3
0.10	R–R	3·325	3·007	2·764	2·571	2·413	2·281	2·168
	DQ	3·320	3·002	2·758	2·564	2·406	2·274	2·161
0.20	R–R	3·822	3·490	3·526	3·019	2·844	2·696	2·569
	DQ	3·816	3·484	3·223	3·012	2·837	2·689	2·562
0.30	R–R	4·417	4·075	3∙799	3·571	3·380	3·216	3·072
	DQ	4·412	4·069	3∙794	3·566	3·374	3·210	3·067
0.40	R–R	5·186	4·836	4·546	4·301	4∙091	3·909	3·749
	DQ	5·183	4·832	4·541	4·296	4∙086	3·904	3·743
0.50	R–R	6·248	5·890	5·586	5·322	5·092	4·889	4·708
	DQ	6·246	5·887	5·582	5·318	5·088	4·885	4·704
0.60	R–R	7·830	7·466	7·145	6·861	6∙608	6·831	6·175
	DQ	7·828	7·463	7·142	6·858	6∙604	6·377	6·170
0.70	R–R	10·456	10·084	9·748	9·442	9·162	8·905	8∙668
	DQ	10·455	10·083	9·746	9·439	9·159	8·902	8∙664
0.80	R–R	15·685	15·319	14·966	14·632	14·317	14·023	13·738
	DQ	15·698	15·319	14·965	14·633	14·321	14·028	13·752

TABLE 5 Comparison of values of Ω_{01} ($\rho = \rho_0[1 + \alpha(r + a)]$)

TABLE 6 Comparison of values of Ω_{02} ($\rho = \rho_0[1 + \alpha(r - a)]$)

					α			
a/b		0	0.50	1	1.50	2	2.50	3
0.10	R–R	7·293	6·685	6·224	5·855	5·549	5·289	5·063
	DQ	6·858	6·201	5·709	5·320	5·003	4·736	4·509
0.20	R–R	7·964	7·318	6·823	6·424	6·091	5·808	5·563
	DQ	7·785	7·111	6·592	6·175	5·830	5·537	5·285
0.30	R–R	9·037	8·364	7·829	7·391	7·024	6·709	6·435
	DQ	8·932	8·245	7·700	7·254	6·878	6·557	6·277
0.40	R–R	10·609	9·865	9·280	8·799	8·391	8·038	7·727
	DQ	10·443	9·742	9·171	8·693	8·284	7·929	7·616
0.50	R–R	12·936	12·099	11·438	10·879	10·417	9·987	9·642
	DQ	12·546	11·833	11·233	10·719	10·272	9·878	9·526
0.60	R–R	16·083	15·359	14·734	14·184	13·636	13·174	12·725
	DQ	15·694	14·967	14·337	13·784	13·291	12·850	12·451
0.70	R–R	21·391	20·650	19·987	19·390	18·846	18·349	17·982
	DQ	20·935	20·194	19·531	18·931	18·386	17·887	17·428
0.80	R–R	32·059	31·031	30·598	29·945	29·335	28·763	28·226
	DQ	31·415	30·660	29·959	29·306	28·696	28·123	27·585

IABLE /

$ ho_1/ ho_0$	$\Omega_{01}(2)$	$\Omega_{01}(4)$	Ω_{02}	$\Omega_{01}(5)$	Ω_{02}					
0.10	4.115	4.058	13.860	4.078	10.263					
0.50	3.707	3.707	9.019	3.697	8.267					
0.90	3.401	3.396	7.522	3.389	7.152					
1.50	3.059	3.013	6.529	3.013	6.352					
2	2.840	2.763	6.075	2.765	5.989					
5	$2 \cdot 101$	1.947	4.847	1.949	5.157					
10	1.586	1.426	4.015	1.429	4.595					

Values of Ω_{01} in the case of discontinuous variation of the density for a/b = 0.10, c/b = 0.50

NOTE: these values have been determined using the co-ordinate functions (2), (4) and (5), see Table 1.

as those obtained using approximation ((4)) and they are not shown in Table 2. Values of Ω_{01} and Ω_{02} for annular membranes of non-uniform density (case A-1) obtained by means of the optimized Rayleigh–Ritz approach and the differential quadrature technique are shown in Tables 3 and 4, respectively. Excellent agreement is observed.† Tables 5 and 6 depict comparisons of values of Ω_{01} and Ω_{02} , respectively, for the non-uniform density case defined as (A-2). Again very good agreement is observed.

Table 7 shows values of Ω_{01} obtained in the case of discontinuous variation of the density by means of the optimized Rayleigh–Ritz method for a membrane defined by a/b = 0.10and c/b = 0.50. Different co-ordinate functions have been employed and the results have been obtained as a function of ρ_1/ρ_0 . For $\rho_1/\rho_0 < 0.90$ the value of Ω_{01} determined using approximation ((5)) is slightly lower, hence more accurate, than the value of Ω_{01} obtained employing approximation ((4)). The situation reverses for $\rho_1/\rho_0 > 1.50$. A similar situation is observed in the case of Ω_{02} for $\rho_1/\rho_0 \leq 2$. The present approach can be extended to more complicated boundary shapes in the case of discontinuous variation of the thickness following the approach developed in reference [2].

ACKNOWLEDGMENTS

The present study has been sponsored by CONICET Research and Development Program (PID-BID 003/92 and PID 3010/92) and by Secretaría General de Ciencia y Technología of Universidad Nacional del Sur (Project Director: Professor R. E. Rossi).

REFERENCES

- 1. J. P. SPENCE and C. O. HORGAN 1983. *Journal of Sound and Vibration* **87**, 71–81. Bounds on natural frequencies of composite circular membranes: integral equation methods.
- P. A. A. LAURA, L. ERCOLI, R. O. GROSSI, K. NAGAYA and G. SÁNCHEZ SARMIENTO 1985 *Journal* of *Sound and Vibration* 101, 299–306. Transverse vibrations of composite membranes of arbitrary boundary shape.
- 3. A. G. STRIZ, S. K. JANG and C. W. BERT 1988 *Thin-Walled Structures* 6, 51–62. Nonlinear bending analysis of thin circular plates by differential quadrature.
- 4. A. R. KUKRETI, J. FARSA and C. W. BERT 1992 *Journal of Engineering Mechanics* 118, 1221–1238. Fundamental frequency of tapered plates by differential quadrature.
- 5. P. A. A. LAURA, E. ROMANELLI and M. J. MAURIZI 1972 *Journal of Sound and Vibration* **20**, 27–38. On the analysis of waveguides of doubly connected cross section by the method of conformal mapping.

[†] The approximation ((4)) was used in Tables 3-6.